10 research outputs found

    Analysis of sun glare on roundabouts with aerial laser scanning data

    Get PDF
    Road geometry and sun glares play an important role concerning road safety. In this research, the direct sunlight in a roundabout sited in Ávila (Spain) is analysed using Aerial Laser Scanning (ALS) point clouds. First, the roundabout is divided in 8 sections, obtaining the driver bearing vectors of the roundabout. Entrances and exits driver bearing vectors of the roundabout are also considered. Then, sun rays are generated for a specific location of the roundabout and in a specific day and time. The incidence of the sun rays with the driver’s vision angle is analysed based on human vision model. Finally, intersections of sun rays with obstacles are calculated utilizing ALS point clouds. ALS data is processed (removing outliers, reducing point density, and computing a Delaunay Triangulation) in order to obtain accurate intersection results with obstacles and optimise the computational time. The method was tested in a roundabout, considering different driver bearings, the slope of the road and the elevation of the terrain. The results show that sun glares are detected at any day and time of the year, therefore areas with risk of direct sun glare within the roundabout are identified. The sun ray’s incidence in the vision angle of the driver is higher during winter solstice, and intersections with obstacles occur mainly during sunrise and sunset. In roundabout vector 7, during winter solstice there is direct sun glare for 7 hours 30 minutes, at the equinoxes for 6 hours 15 minutes and during summer solstice there is no direct sun glare.Xunta de Galicia | Ref. ED481B-2019-061Xunta de Galicia | Ref. ED431C 2020/01Ministerio de Ciencia e Innovación | Ref. PID2019-105221RB-C43Ministerio de Ciencia e Innovación | Ref. TIN2016-77158 -C4-2-RMinisterio de Ciencia e Innovación | Ref. FJC2018-035550-

    A discordance analysis in manual labelling of urban mobile laser scanning data used for deep learning based semantic segmentation

    Get PDF
    Labelled point clouds are crucial to train supervised Deep Learning (DL) methods used for semantic segmentation. The objective of this research is to quantify discordances between the labels made by different people in order to assess whether such discordances can influence the success rates of a DL based semantic segmentation algorithm. An urban point cloud of 30 m road length in Santiago de Compostela (Spain) was labelled two times by ten persons. Discordances and its significance in manual labelling between individuals and rounds were calculated. In addition, a ratio test to signify discordance and concordance was proposed. Results show that most of the points were labelled accordingly with the same class by all the people. However, there were many points that were labelled with two or more classes. Class curb presented 5.9% of discordant points and 3.2 discordances for each point with concordance by all people. In addition, the percentage of significative labelling differences of the class curb was 86.7% comparing all the people in the same round and 100% comparing rounds of each person. Analysing the semantic segmentation results with a DL based algorithm, PointNet++, the percentage of concordance points are related with F-score value in R2 = 0.765, posing that manual labelling has significant impact on results of DL-based semantic segmentation methods.Xunta de Galicia | Ref. ED481B-2019-061Ministerio de Ciencia e Innovación | Ref. PID2019-105221RB-C43Ministùre de l’Economie of the G. D. of Luxembourg | Ref. SOLSTICE 2019-05-030-24Universidade de Vigo/CISU

    Pavement crack detection and clustering via region-growing algorithm from 3D MLS point clouds

    Get PDF
    Road condition monitoring plays a critical role in transportation infrastructure maintenance and traffic safety assurance. This research introduces a methodology to detect cracks on pavement point clouds acquired with Mobile Laser Scanning systems, which offer more versatility and comprehensive information about the road environment than other specific surveying systems (i.e., profilometers, 3D cameras). The methodology comprises the following steps: (1) Road segmentation; (2) the detection of candidate crack points in individual scanning lines of the point cloud, based on point elevation; (3) crack point clustering via a region-growing algorithm; and (4) crack geometrical attributes extraction. Both the profile evaluation and the region-growing clustering algorithms have been developed from scratch to detect cracks directly from 3D point clouds instead of using raster data or Geo-Referenced Feature images, offering a quick and effective pre-rating tool for pavement condition assessment. Crack detection is validated with data from damaged roads in Portugal.Ministerio de Ciencia e InnovaciĂłn | Ref. PID2019-105221RB-C43Ministerio de Ciencia e InnovaciĂłn | Ref. FJC2018-035550-

    Santiago urban dataset SUD: Combination of Handheld and Mobile Laser Scanning point clouds

    Get PDF
    Santiago Urban Dataset SUD is a real dataset that combines Mobile Laser Scanning (MLS) and Handheld Mobile Laser Scanning (HMLS) point clouds. The data is composed by 2 km of streets, sited in Santiago de Compostela (Spain). Point clouds undergo a manual labelling process supported by both heuristic and Deep Learning methods, resulting in the classification of eight specific classes: road, sidewalk, curb, buildings, vehicles, vegetation, poles, and others. Three PointNet++ models were trained; the first one using MLS point clouds, the second one with HMLS point clouds and the third one with both H&MLS point clouds. In order to ascertain the quality and efficacy of each Deep Learning model, various metrics were employed, including confusion matrices, precision, recall, F1-score, and IoU. The results are consistent with other state-of-the-art works and indicate that SUD is valid for comparing point cloud semantic segmentation works. Furthermore, the survey's extensive coverage and the limited occlusions indicate the potential utility of SUD in urban mobility research.Agencia Estatal de InvestigaciĂłn | Ref. PID2019-105221RB-C43Xunta de Galicia | Ref. ED481B-2019-061Xunta de Galicia | Ref. ED431C 2020/01Universidade de Vigo/CISU

    Detection of direct sun glare on drivers from point clouds

    Get PDF
    Sunlight conditions can reduce drivers’ visibility, which is a safety concern on road networks. This research introduces a method to study sun glare incidence in road environments. Sun glare areas during daylight hours are automatically detected from mobile laser scanning (MLS) and aerial laser scanning (ALS) point clouds. The method comprises the following steps. First, the Sun’s position (solar altitude and azimuth) referring to a location is calculated. Second, the incidence of sun glare with the user’s angle of vision is analyzed based on human vision. Third, sun ray intersections with near obstacles (vegetation, building, etc.) are calculated utilizing MLS point clouds. Finally, intersections with distant obstacles (mountains) are calculated utilizing ALS point clouds. MLS and ALS data are processed in order to combine both data types, remove outliers, and optimize computational time for intersection searches (point density reduction and Delaunay triangulation). The method was tested on two real case studies, covering roads with different bearings, slopes, and surroundings. The combination of MLS and ALS data, together with the solar geometry, identify areas of risk for the visibility of drivers. Consequently, the proposed method can be utilized to reduce sun glare, implementing warnings in navigation systems.Xunta de Galicia | Ref. ED481B-2019-061Xunta de Galicia | Ref. ED431C 2020/01Agencia Estatal de Investigación | Ref. PID2019-105221RB-C43Ministerio de Economía, Industria y Competitividad | Ref. TIN2016-77158- C4-2-

    Memoria del primer foro sobre logros, problemas y propuestas de los cuerpos académicos de educación y humanidades de la Universidad Autónoma del Estado de México

    Get PDF
    Motivados por el interĂ©s de dialogar nuestras preocupaciones cotidianas en torno al quehacer acadĂ©mico en la Universidad, e impulsados por la inquietud de compartir puntos de vista y apreciaciones acerca de la forma en que organizamos colectivamente el trabajo acadĂ©mico (en especial, de investigaciĂłn) en los diferentes espacios de especializaciĂłn disciplinaria e interdisciplinaria en los campos de las Ciencias de la EducaciĂłn y las Humanidades, asistimos a la convocatoria para reflexionar quĂ© tanto hemos avanzado como verdaderos equipos de trabajo (sobre todo en lo relativo a la investigaciĂłn) y cuĂĄnto aĂșn nos queda por hacer, a fin de coordinar esfuerzos individuales y sumar capacidades en proyectos y actividades comunes a cada cuerpo acadĂ©mico

    The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies

    No full text
    International audienceSignificance There is growing evidence that preexisting autoantibodies neutralizing type I interferons (IFNs) are strong determinants of life-threatening COVID-19 pneumonia. It is important to estimate their quantitative impact on COVID-19 mortality upon SARS-CoV-2 infection, by age and sex, as both the prevalence of these autoantibodies and the risk of COVID-19 death increase with age and are higher in men. Using an unvaccinated sample of 1,261 deceased patients and 34,159 individuals from the general population, we found that autoantibodies against type I IFNs strongly increased the SARS-CoV-2 infection fatality rate at all ages, in both men and women. Autoantibodies against type I IFNs are strong and common predictors of life-threatening COVID-19. Testing for these autoantibodies should be considered in the general population

    The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies

    No full text
    International audienceSignificance There is growing evidence that preexisting autoantibodies neutralizing type I interferons (IFNs) are strong determinants of life-threatening COVID-19 pneumonia. It is important to estimate their quantitative impact on COVID-19 mortality upon SARS-CoV-2 infection, by age and sex, as both the prevalence of these autoantibodies and the risk of COVID-19 death increase with age and are higher in men. Using an unvaccinated sample of 1,261 deceased patients and 34,159 individuals from the general population, we found that autoantibodies against type I IFNs strongly increased the SARS-CoV-2 infection fatality rate at all ages, in both men and women. Autoantibodies against type I IFNs are strong and common predictors of life-threatening COVID-19. Testing for these autoantibodies should be considered in the general population

    Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    No full text
    BackgroundWe previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in similar to 80% of cases.MethodsWe report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.ResultsNo gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1x10(-4)) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1x10(-4)). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4x10(-3)), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7x10(-8)). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68x10(-5)).ConclusionsRare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old
    corecore